5(2c+7)=c^2+17c+7

Simple and best practice solution for 5(2c+7)=c^2+17c+7 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5(2c+7)=c^2+17c+7 equation:



5(2c+7)=c^2+17c+7
We move all terms to the left:
5(2c+7)-(c^2+17c+7)=0
We multiply parentheses
10c-(c^2+17c+7)+35=0
We get rid of parentheses
-c^2+10c-17c-7+35=0
We add all the numbers together, and all the variables
-1c^2-7c+28=0
a = -1; b = -7; c = +28;
Δ = b2-4ac
Δ = -72-4·(-1)·28
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{161}}{2*-1}=\frac{7-\sqrt{161}}{-2} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{161}}{2*-1}=\frac{7+\sqrt{161}}{-2} $

See similar equations:

| 0.6p=3 | | 17x+11=117 | | -2(3–7x)=22 | | 2+3x+4x=2 | | 180=8(3.75x) | | -8-2x=-x+4 | | 10-5x+7x=-2 | | 7x+40+3x=180 | | 3h+8=4h+13 | | 2/3x-2=4,x= | | –6u–14=–2 | | −4x+10=−8+2x | | 8+2x+3-x=2x+ | | 6x-50=4x-10 | | 2x=12x+56 | | 6x+45=4x-15 | | 5x+7=6×-18=3×+1 | | 9x+23(9+52x)=8x+5 | | y^=576 | | 20x+5=5x+65,x= | | r−10=24 | | n-2(3n+4)=-6(n-2)-1 | | 2x+4+3=2x+2+1 | | x-5-3x-15=180 | | n−5=64 | | x/25=8/4 | | x-5+3x-15=180 | | -(-6-8x)=5(6x+4) | | g+9=79 | | j+6=64 | | 85=f+15 | | 12/v=8/17 |

Equations solver categories